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1
PREDICT COMPUTING PLATFORM
MEMORY POWER UTILIZATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a Continuation of U.S. application Ser. No. 11/447,
701, filed Jun. 6, 2006.

This application is related to U.S. application Ser. No.
10/887,368, filed by Udayan Mukherjee and Aniruddha
Kundu and entitled “On-line Diagnostic System and
Method.”

BACKGROUND

Power consumption and cooling constraints are typical
challenges faced in a computing platform operating environ-
ment. These challenges are magnified in a typical telecom-
munication network or datacenter where a multitude of com-
puting platforms (e.g., in a rack, cabinet, etc.) are deployed.
Constant pressure is exerted on service providers and data-
center administrators to reduce the total cost of ownership for
these deployments and yet increase performance. This may
lead to a higher density of processing elements on a comput-
ing platform and/or on a rack level to improve performance.
Minimizing power consumption is an important goal for ser-
vice providers and datacenter administrators to hold down the
cost of energy bills and total cost of ownership.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of elements of an example com-
puting platform;

FIG. 2 provides a block diagram of an example memory
power utilization (MPU) manager architecture;

FIG. 3 is an illustration of elements of the MPU manager to
implement an example statistical prediction module;

FIG. 4 provides a table to depict example operating param-
eters to be monitored;

FIG. 5 is an illustration of example memory power states;
and

FIG. 6 is a flow chart of an example method to predict
memory power utilization and transition a memory module to
another power state based on the prediction.

DETAILED DESCRIPTION

As mentioned in the background, minimizing power con-
sumption is an important goal to hold down the total cost of
ownership. While there has been a particular focus on reduc-
ing power utilized by processing elements (e.g., central pro-
cessing units (CPUs)), current and proposed memory tech-
nologies are becoming significant sources of power
consumption. This presents a challenge in designing a high
performance computing platform and holding down the total
cost of ownership.

In one example, one or more statistical prediction models
are implemented to predict memory power utilization and
reduce power consumption for a computing platform. This
implementation includes determining a configuration param-
eter for the computing platform, monitoring an operating
parameter for the computing platform and predicting memory
power utilization for the computing platform. The prediction
is to be based on the determined configuration parameter and
the monitored operating parameter. One or more memory
modules resident on the computing platform are transitioned
to one of a plurality of power states based at least in part on
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memory power utilization predicted via the implementation
of'the one or more statistical prediction models.

FIG. 1 is an illustration of elements of an example com-
puting platform 100. In one example, as depicted in FIG. 1,
computing platform 100 includes memory power utilization
(MPU) manager 110, network interface 120, processing ele-
ments 130, memory controller 140, memory power planes
150 and memory modules 160. Although not shown in FIG. 1,
computing platform 100 may also include other hardware,
software, firmware or a combination of these elements and be
a part of a computing device. This computing device may be
a single blade computer in a chassis and/or rack, a server, a
desktop computer, a laptop computer, a notebook computer, a
digital broadband telephony device, a digital home network
device (e.g., cable/satellite/set top box, etc.), a personal digi-
tal assistant (PDA), System on Chip (SOC) and the like.

In one example, as described more below, MPU manager
110 determines configuration parameters for computing plat-
form 100 and monitors operating parameters to predict
memory power utilization. Elements on computing platform
100 (e.g., MPU manager 110, memory controller 140) may
cause memory power planes 150 to transition one or more
memory modules from one power state to another power state
(see FIG. 5).

In one example, MPU manager 110 is coupled to other
elements of computing platform 100 via one or more com-
munication links. These communication links, for example,
are depicted in FIG. 1 as communication links 112, 114, 116
and 118. As described more below, MPU manager 110, for
example, includes an appropriate interface to these other ele-
ments to determine configuration parameters, monitor oper-
ating parameters and cause memory modules to transition to
another power state.

In one example, network interface 120 includes the inter-
face via which computing platform 100 is coupled to a net-
work via network link 101, e.g., a wired or a wireless local
area network (LAN/WLAN), a wide area network (WAN/
WWAN), a metropolitan area network (MAN), a personal
area network (PAN) and a cellular or a wireless broadband
telephony network. Network interface 120, for example,
includes hardware, software or firmware to transmit and
receive data to this network. This may include one or more
network interface cards, fabric interface cards or other ele-
ments to receive and transmit data via network link 101. In
one example, communication link 122 may be used by net-
work interface 120 elements to make memory read/write
requests to memory controller 140. These requests may send/
retrieve data to/from memory modules 160. Although not
shown in FIG. 1, MPU manager 110, for example, may also
couple to communication link 101 and directly monitor net-
work bandwidth.

In one example, processing elements 130 include the soft-
ware, hardware, and/or firmware to support one more pro-
cessing operations on computing platform 100. This may
include software such as operating systems and/or applica-
tions, hardware such as microprocessors, network proces-
sors, service processors, microcontrollers, field program-
mable gate arrays (FPGAs), application specific integrated
circuit (ASICs) and firmware to include executable code to
initiate basic input/output systems (BIOS) and/or initiate
computing platform 100 elements for virtualization opera-
tions. In one example, communication link 132 may be used
by processing elements 130 to make memory read/write
requests to memory controller 140.

In one example, memory controller 140 handles/completes
requests for data to be stored (written) and retrieved (read)
into one or more memory modules of memory modules 160.
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For example, these requests may be received via communi-
cation links 122 or 132. In one implementation, memory
controller 140 may use memory power planes 150 to transi-
tion these one or more memory modules into various power
states based on predicted memory power utilization that is
determined, for example, by MPU manager 110.

In one example, memory controller 140 may be integrated
with processing element 130. For example, memory control-
ler 140 may serve as an integrated memory controller for a
microprocessor. In this example, MPU manager 110 may
communicate with memory controller 140 through an inter-
face coupled to processing elements 130 (e.g., via communi-
cation link 112) or through an interface coupled directly to an
integrated memory controller 140 (e.g., via communication
link 132).

In one implementation, memory power planes 150 provide
power to memory modules 160 via power feeds 152. Power
feeds 152 as shown in FIG. 1, for example, are routed to each
memory module from among memory modules 160. Power
feeds 152 may provide power in various different voltage (v)
levels, e.g.,0.9v, 1.5v, 1.8v, 3.3v, 5v, etc. These voltage levels,
for example, are regulated to provide power within a range of
voltages.

In one example, memory modules 160 include a plurality
of memory modules. These memory modules are depicted in
FIG. 1 as 160-1 through 160-n+1, with n representing any
positive integer. In one implementation, pairs of these
memory modules couple to memory controller 140 through at
least one memory channel (e.g., including data transmit and
data receive communication links). An example of this cou-
pling is depicted in FIG. 1 and includes memory channels
162, 164 and 166. This disclosure is not limited to only a pair
of modules per channel but may include any number of
memory modules per channel and may also include any num-
ber of memory channels. Data to be written to or read from
each pair of memory modules is routed through these
memory channels, for example, via point-to-point serial com-
munication links. As described more below, these memory
modules may consist of various types of memory that can be
placed into various power states or levels based on predicted
memory power utilization for computing platform 100.

FIG. 2 provides a block diagram of an example MPU
manager 110 architecture. In FIG. 2, MPU manager 110’s
example architecture includes power optimization logic 210,
control logic 220, memory 230, input/output (1/O) interfaces
240 and optionally one or more applications 250.

In one example, the elements portrayed in FIG. 2’s block
diagram are those elements to support or enable MPU man-
ager 110 as described in this disclosure, although a given
MPU manager may include some, all or more elements than
those depicted in FIG. 2. For example, power optimization
logic 210 and control logic 220 may each or collectively
represent a wide variety of logic device(s) or executable con-
tent to implement the features of MPU manager 110. These
logic device(s) may include a microprocessor, network pro-
cessor, service processor, microcontroller, FPGA, ASIC,
sequestered thread or core of a multi-core/multi-threaded
microprocessor, special operating mode of a processor (e.g.,
system management mode) or combination thereof.

In FIG. 2, power optimization logic 210 includes configu-
ration feature 212, monitor feature 214, predict feature 216
and transition feature 218. In one implementation, power
optimization logic 210 uses these features to perform several
operations. These operations include, for example, determin-
ing a configuration parameter, monitoring an operating
parameter and predicting memory power utilization for com-
puting platform 100 based on the determined configuration
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parameter and the monitored operating parameter. These
operations may also include causing one or more memory
modules to transition to various power states based at least in
part on the predicted memory power utilization for computing
platform 100.

Control logic 220 may control the overall operation of
MPU manager 110 and as mentioned above, may represent
any of a wide variety of logic device(s) or executable content
to implement the control of MPU manager 110. In alternate
examples, the features and functionality of control logic 220
are implemented within power optimization logic 210.

According to one example, memory 230 stores executable
content. The executable content may be used by control logic
220 and/or power optimization logic 210 to implement or
activate features or elements of MPU manager 110. Memory
230 may also temporarily maintain configuration and operat-
ing parameters obtained by power optimization logic 210°s
features to predict memory power utilization for computing
platform 100.

1/0 interfaces 240 may provide an interface via a commu-
nication medium or link between MPU manager 110 and
elements resident on computing platform 100. As mentioned
above for FIG. 1, MPU manager 110 may couple to these
elements via communication links 112, 114,116 and 118. I/O
interfaces 240, for example, include interfaces that operate
according to various communication protocols to communi-
cate over these communication links. For example, /O inter-
faces 240 operate according to acommunication protocol that
is described in a specification such as the System Manage-
ment Bus (SMBus) Specification, version 2.0, published
August 2000, and/or later versions. As described in more
detail below, elements of computing platform 100 may pro-
vide information in memory registers or memory tables that
are referred to in this disclosure as “hooks.” Features of power
optimization logic 210 may use [/O interface 240 to access
these hooks via communication links 112,114, 116 and 118.

1/0O interfaces 240 may also provide an interface to ele-
ments located remotely to computing platform 100. As a
result, [/O interfaces 240 may enable power optimization
logic 210 or control logic 220 to receive a series of instruc-
tions from these elements. The series of instructions may
enable power optimization logic 210 and/or control logic 220
to implement one or more features of MPU manager 110.

In one example, MPU manager 110 includes one or more
applications 250 to provide internal instructions to control
logic 220 and/or power optimization logic 210.

FIG. 3 is an illustration of elements of MPU manager 110
to implement an example statistical prediction module 300. In
one example, the elements of MPU manager 110 are features
of power optimization logic 210. As depicted in FIG. 3, these
features include configuration feature 212, monitor feature
214 and predict feature 216.

In one implementation, configuration feature 212, monitor
feature 214 and predict feature 216 are part of a statistical
prediction or heuristics module activated by power optimiza-
tion logic 210. In one example, configuration feature 212
obtains configuration parameters associated with elements
resident on computing platform 100. These configuration
parameters include, for example, the resources present on
computing platform 100 (e.g., processing elements, network
interfaces, memory, software, firmware, etc.) and the con-
figuration of those resources. For example, memory modules
160 are used in various configurations that may impact
memory power utilization in different ways. These usage
configurations, for example, are obtained from memory con-
troller 140 and include, but are not limited to, memory inter-
leaving, memory mirroring, memory sparing and rank order
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allocation. Configuration parameters may also include infor-
mation for monitor feature 214 to determine what operating
parameters are to be monitored and how to obtain them.

In one example, configuration feature 212 obtains infor-
mation that monitor feature 214 uses to obtain operating
parameters placed in hooks associated with or maintained by
elements of computing platform 100. In one example, these
hooks are maintained in memory tables or memory registers
and are depicted in FIG. 3 as hooks 320, 330 340 and 360 for
network interface 120, processing elements 130, memory
controller 140 and memory power planes 150, respectively.

As shown in FIG. 4, table 400 lists examples of categories
and operating parameters associated with hooks 320, 330,
340 and 350. In one example, at least a portion of the contents
of table 400 are obtained by configuration feature 212 (e.g.,
during power-up of computing platform 100) and made
accessible to monitor feature 214 (e.g., temporarily stored in
memory 230). Monitor feature 214 may then monitor oper-
ating parameters for computing platform 100 by accessing
memory registers or memory tables associated with the hooks
(e.g., via communication links 112, 114, 116 or 118). In one
example, configuration feature 212 and monitor feature 214
provide configuration and operating parameters to predict
feature 216. Predict feature 216, for example, implements
various statistical prediction models including the use of sta-
tistical parameters in prediction algorithms that are based on
computing platform 100’s configuration and operating
parameters to predict memory power utilization for comput-
ing platform 100.

In one example, transition feature 218 may receive predic-
tions of memory power utilization for computing platform
100 from predict feature 216. Transition feature 218, for
example, triggers or causes transition of one or more memory
modules in memory modules 160 to other power states based
on the predictions received from predict feature 216.

In one example, as shown in FIG. 4, hook 320 includes a
network traffic category. Hook 320 for example includes
information associated with the amount and/or rate of data
received and forwarded through network interface 120. This
may also include network traffic statistics (e.g., usage pat-
terns, throughput, congestion, types of data traffic, etc.) for
data (e.g., packet-based) that is received from and forwarded
to a network coupled to computing platform 100 through
network interface 120.

Hook 330, for example, contains several categories of
information associated with processing element utilization,
performance, power states and memory allocation. For
example, the processing element may include a microproces-
sor and its utilization may be based on idle times, input/out
times, system times, user times or number of processes run-
ning on the microprocessor. The microprocessor’s perfor-
mance may be based on cache misses, memory loads and
store requests and the microprocessor’s power state may also
be a monitored operating parameter maintained in hook 330.
In one example, the microprocessor’s power state includes
suspend, standby and deep sleep (e.g., microprocessor is
halted and no instructions are being executed).

The processing element may also include an operating
system and the operating system’s memory management. In
one example, this may include physical page allocations that
are maintained in hook 330. De-allocations, for example, may
be another operating parameter maintained in hook 330.

Hook 340, for example, contains memory access pattern
information. This may include the number of reads and writes
that memory controller 140 services or completes for com-
puting platform 100 during a given time period. This may also
include the number of commands pending and the number of
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scrubs that memory controller 140 performs in the given time
period. The amount of mirroring (e.g., redundant memory
read/write requests) that memory controller 140 handles/
completes may also be included as an operating parameter
maintained in hook 340.

Hook 350, for example, contains memory module power
state information. This may include the power levels being
provided to memory modules 160 by memory power planes
150.

Additional hooks may also be maintained by various other
elements of computing platform 100. Thus, this disclosure is
not limited to only the operating parameters associated with
hooks 320, 330, 340 and 350, as described above.

In one example, as mentioned above, predict feature 216
uses statistical parameters in one or more prediction algo-
rithms. These statistical parameters, in one implementation,
can be learned or determined starting or beginning at the time
computing platform 100 is initially powered-up. Learned or
determined statistical parameters may also be tuned auto-
matically or periodically during computing platform 100’s
runtime. In one example, the statistical parameters can also be
learned for a given period of time (e.g., a training period) or
configured for one or more types of computing platform 100
resources and/or utilization parameters.

In one implementation, statistical parameters allows pre-
dict feature 216 to anticipate the need to transition memory
modules 160 to different power states to meet memory utili-
zation needs. This anticipation, for example, may reduce
possible memory latencies or reduction in data throughputs
for computing platform 100 as one or more memory modules
160 are transitioned to these different power states. Power
budget limits based on a power budge profile for computing
platform 100, for example, also may influence memory utili-
zation needs. As a result, predict feature 216 may anticipate
transition needs to meet a given power budget profile for
computing platform 100. These statistical parameters used by
predict feature 216 may include, but are not limited to,
memory requests made to a memory controller, processing
element utilizations, network bandwidth and power budget
profile.

In one example, network traffic information obtained from
hook 320 can go into a statistical parameter to anticipate
network bandwidth. Memory utilization, for example, varies
based on network bandwidth as computing platform 100 may
use memory modules 160 to at least temporarily store infor-
mation to be received from or transmitted to a network. Thus,
a statistical parameter used to predict memory utilization may
be adjusted based on the network traffic information obtained
from hook 320 at start-up, periodically or over a given period
of time.

In one implementation, memory access patterns for com-
puting platform 100 are obtained from hook 340 during an
initial training period or while running applications. This may
result in learned statistical parameters that indicate peak, busy
traffic times or off-peak or low memory traffic times for
computing platform 100. These busy or low traffic times may
be based on time of day, day of year and holidays taking into
account various traffic models associated with the applica-
tions. The busy or low traffic times may also be based on a
sliding time window or a standard probabilistic distribution
function with mean and variance parameters. The appropriate
busy or low traffic pattern is determined during the training
period and can also be imported in the statistical model via
determined configuration parameters. These busy or low traf-
fic times may be used in a prediction algorithm (for single or
multiple memory modules 160) as shown in table 1 below:
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TABLE 1

If (current_time == busy__ traffic_ time)
Monitor operating parameters to confirm busy traffic time.
If (memory_ access_ pattern == busy__traffic)
Power State unchanged.

Else if (memory access pattern == low traffic or no traffic)
Adjust statistical parameters to learn this instance of low
traffic time;

Power State unchanged.
Else if (current_time == low__traffic_ time or idle_ time)

Determine appropriate low power state of memory module
based on idle window and probability of remaining idle or in low
traffic time for some duration based on learned statistical
parameters;

Transition memory module into low power state;

Start the end duration timer for transitioning memory out of
low power state based on expected duration of low or idle traffic
time;

Continue monitoring the operating parameters (memory
capacity utilization, CPU utilization, network traffic, memory
access pattern) to proactively transition memory module back into
active state before it’s required.

In another implementation, network traffic information
obtained from hook 320 and memory access patterns
obtained from hook 340 result in learned statistical param-
eters that indicate busy or low traffic times may be used along
with learned statistical parameters resulting from information
obtained from hook 330. These statistical parameters result-
ing from information obtained from hook 330 may indicate
peak memory utilization for processing elements 130 (e.g.,
CPU memory utilizations). In one example, computing plat-
form 100’s configuration parameters include the memory
capacity of memory modules 160 and this memory capacity
may be compared to peak memory utilization and busy or low
traffic times in an example prediction algorithm as shown in
table 2 below. The busy or low traffic times may be based on
rules described above (e.g., time of day, day of year, holidays,
sliding time window, probabilistic distribution function).

TABLE 2

If (current__time == busy__ traffic_ time)

Monitor operating parameters or hooks (330) to confirm
busy traffic time;

If (memory_ capacity_ utilization == peak__memory)

Power State unchanged.

Else if (memory__capacity_ utilization == low__traffic or

no_traffic)
Adjust statistical parameters to learn this instance of
low traffic time;
Power State unchanged.

Else if (current_time == low__traffic_ time or idle_ time)

Determine appropriate low power state of memory module
based on idle window and probability of remaining idle or in low
traffic time for some duration based on learned statistical
parameters;

Transition memory module into low power state;

Start the end duration timer for transitioning memory out of
low power state based on expected duration of low or idle traffic;

Continue monitoring the operating parameters (e.g.
memory capacity utilization, CPU utilization , network bandwidth)
to proactively transition memory module back into active state
before it’s required.

In another implementation, a power budget profile for
computing platform 100 along with power consumed by
computing platform 100 is used to determine a need to limit
power consumed by computing platform 100 by transitioning
memory modules 160 into lower power states. In this imple-
mentation, information in hooks 330 and 340 are obtained to
gather or monitor operating parameters for power consumed
by computing platform 100. For example, CPU utilization
obtained from hook 330 and memory bandwidth obtained
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from hook 340 may relate to power consumed on computing
platform 100. The power budge profile may be compared to
this power consumption in an example prediction algorithm
as shown in table 3 below.

TABLE 3

If (power__consumed > power__budget_ profile);
If (CPU__utilization > peak_ CPU__utilization)
Check the memory utilization (330, 340);
If (low__memory_ traffic)
Transition memory modules into low power
state to reduce power consumed;
Or
Throttle memory bandwidth to reduce power
consumed;
Continue monitoring power consumed;
Else if (CPU__utilization == low__traffic)
Transition CPU to different power state to reduce
power consumed.

FIG. 5 is an illustration of example memory power states
500 that transition feature 218 may transition one or more
memory modules from among memory modules 160. As
shown in FIG. 5, memory power states 500 include offline
state 510, online state 520, standby state 530 and suspend
state 540.

In one implementation, memory modules of memory mod-
ules 160 may be dual inline memory modules (DIMMs). In
this implementation, a DIMM includes a buffer (not shown)
to temporarily hold data written to or read to the DIMM. The
DIMM including the buffer, for example, is referred to as a
fully buffered DIMM or FB-DIMM. An FB-DIMM, for
example, may operate as described in a proposed FB-DIMM
standard by the JEDEC Solid State Technical Association.
According to the proposed FB-DIMM standard, the buffer
part of an FB-DIMM is referred to as an advanced memory
buffer (AMB).

In one example, an FB-DIMM AMB couples to memory
controller 140 via a memory channel. In one configuration,
for example, 2 FB-DIMMS couple to memory controller 140
via a single memory channel. For example, AMB’s for
memory modules 160-1 and 160-2 couple via memory chan-
nel 162, AMB’s for memory modules 160-3 and 160-4 couple
via memory channel 164 and AMB’s for memory modules
160-7 and 160-z+1 couple via communication channel 166
(see FIG. 1). In this configuration, for example, data to be
written to or read to a DIMM is first routed to the AMB and
then forwarded to its destination (e.g., memory controller 140
or a DIMM).

According to one example, for an FB-DIMM, offline state
510 represents a power state where the AMB and the DIMM
are powered off. Online state 520, for example, is when the
DIMM and the AMB are fully powered. Standby state 530,
for example, is when the DIMM is in a lower power mode as
compared to being fully powered (e.g., in a power-down
mode) and the interface on the AMB that couples the DIMM
to memory manager 140 is turned off (e.g., transmit and
receive communication links disabled for a short, fixed dura-
tion of time or for an extended, variable duration of time).
Suspend state 540 may represent a power state where the
AMB is powered off and the DIMM is in a self-refresh mode.

In one implementation, as portrayed in FIG. 5, an FB-
DIMM can be transitioned from offline state 510 to online
state 520. In an online state 520, for example, the FB-DIMM
can be transitioned into either suspend state 540 or standby
state 530. From standby state 530 or suspend state 540, the
FB-DIMM may transition to online state 520. Also, if in
Standby state 530, the FB-DIMM may transition to suspend
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state 540. Finally, if in suspend state 540, the FB-DIMM may
transition to offline state 510 or to standby state 530. This
disclosure is not limited to only these types of memory power
state transitions and is also not limited to only FB-DIMM
memory types. Other types of memory may include, but are
not limited to, generations of double data rate (DDR) static
dynamic random access memory such as DDR (first genera-
tion), DDR2 (second generation) or DDR3 (third generation).
Other types of memory may also include future generations
of FB-DIMM or other memory technologies.

FIG. 6 is a flow chart of an example method to predict
memory power utilization and transition a memory module to
another power state based on the prediction. In one example,
computing platform 100, as depicted in FIG. 1, is used to
describe this method. In block 610, for example, computing
platform 100 is powered-on or powered-up. This power-up
may occur as power is initially provided to computing plat-
form 100, or incident to a reset of computing platform 100.

Inblock 620, in one example, upon power-up of computing
platform 100, power optimization logic 210 in MPU manager
110 activates configuration feature 212. Configuration fea-
ture 212, in one example, obtains one or more configuration
parameters associated with elements resident on computing
platform 100. These configuration parameters may include
the resources and the configuration of those resources for
computing platform 100. Configuration feature 212, in one
example, compiles at least a portion of these configuration
parameters into a table and temporarily stores that table in a
memory (e.g., memory 230). Configuration feature 212 may
also compile a table similar to table 400 to indicate the hooks
via which operating parameters can be monitored. This table,
for example, is at least temporarily stored in a memory (e.g.,
memory 230).

In block 630, in one example, power optimization logic
210 activates monitor feature 214. Monitor feature 214, in
one implementation, obtains or accesses the tables tempo-
rarily stored by configuration feature 212. Monitor feature
214, for example, uses the hooks described in the table similar
to table 400 to facilitate the monitoring of computing plat-
form 100’s operation parameters. For example, monitor fea-
ture 214 uses hooks 320, 330 340 and 360 to obtain operating
parameters associated with network interface 120, processing
elements 130, memory controller 140 and memory modules
160, respectively.

In block 640, in one example, power optimization logic
210 activates predict feature 216. Predict feature 216, in one
example, gathers configuration parameters and operating
parameters obtained by configuration feature 212 and moni-
tor feature 214. As mentioned above, predict feature 216
implements various statistical prediction models around
computing platform 100’s configuration and operating
parameters to predict memory power utilization for comput-
ing platform 100.

In one implementation, predict feature 216’°s implementa-
tion of various statistical prediction models that include the
configuration and operating parameters allows predict feature
216 to predict changes in memory utilization by various com-
puting platform 100 elements. For example, memory in a
given memory module of memory module 160 is either being
allocated heavily or not at all by one or more entities of
processing clements 130 (e.g., operating systems and/or
applications). This may be indicated when monitor feature
214 periodically obtains hook 330 from processing elements
130. Based at least in part on the information in hook 330 and
computing platform 100’s configuration parameters and
learned or trained statistical parameters, predict feature 216
may be able to predict the utilization of the given memory
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module and its power may be changed accordingly to reduce
memory latencies or to meet a given power budget profile for
computing platform 100.

In addition to usage patterns, in one example, predict fea-
ture 216 may also account for various configuration param-
eters for memory modules 160 such as memory interleaving,
memory mirroring, memory sparing and rank order alloca-
tion. This accounting may allow predict feature 216 to deter-
mine the prediction that may least impact the performance of
computing platform 100 elements (e.g., processing elements
130) when a given memory module or modules is transitioned
to another power state.

In one implementation, memory modules 160-1-160-7+1
are FB-DIMMs as described above for FIG. 5. In one
example, memory modules 160-1-160-7+1 have a configura-
tion of 2 DIMMs per communication channel per branch,
although this disclosure is not limited to this type of memory
module configuration. If, for example, BIOS has enabled a
branch sequential and rank interleaving 4:1 configuration, the
ranks in a given branch participate in the branch memory
region and even lower order memory address accesses go to
the DIMMSs on a given branch. Hence, predict feature 216
may account for this interleaving and consider a set of four
DIMMs as a single memory resource group which can poten-
tially be transitioned into the same power state (e.g., from
among power states 500). Similarly, predict feature 216 may
account for other types of memory interleaving configura-
tions and may also account for power and performance
friendly memory configurations for end user applications
implemented on computing platform 100.

In block 650, in one example, power optimization logic
210 activates transition feature 218. Transition feature 218, in
one example, receives a prediction from predict feature 216
that a given memory module or modules of memory modules
160 will not be utilized based on its implementation of at least
one statistical prediction model. For example, the given
memory module is memory module 160-1. Thus, for
example, transition feature 218 causes memory module 160-1
to transition into another power state to save power for com-
puting platform 100. This other power state may be one of the
power states 500 depicted in FIG. 5. For example, if module
160-1 was in online state 520, transition feature 218 may
cause memory module 160-1 to transition to offline state 510,
standby state 530 or suspend state 540.

In one example, after module 160-1 is transitioned into
another power state, successive predictions by predict feature
216 based on configuration and operating parameters may
absorb possible reactivation/latency penalties that could
degrade the performance of computing platform 100. Thus,
the process may return to block 620 and/or 630 to predict the
use of memory module 160-1 and then cause module 160-1 to
be transitioned to another power state based on that predicted
use or usage pattern.

Referring again to MPU manager 110 in FIG. 1. MPU
manager 110, for example, is depicted as an element of com-
puting platform 100 that is separate from Network interface
120, processing elements 130 and memory controller 140. In
this example, MPU manager 110 may be part of or hosted on
a dedicated management microcontroller such as a service
processor.

In another example, MPU manager 110 resides within a
grouping of computing platform 100 resources that includes
memory controller 140 (e.g., a chipset). MPU manager 110,
in this other example, may be part of'a dedicated management
microcontroller within the chipset or may be included within
or hosted on memory controller 140. MPU manager 110, for
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example, obtains configuration and operating parameters
through the various communication links coupled to memory
controller 140.

In yet another example, MPU manager 110 is part of a
virtual partition of computing platform 100. This may be a
service operating system running on a dedicated sequestered
core or portion of a core that operates using virtualization
technology/virtual machine monitor (VI/VMM) support in
processing elements 130. MPU manager 110, for example,
may use various communication links coupled to processing
elements 130 and/or to the virtual partition where MPU man-
ager 110 exists or is executing to obtain configuration and
operating parameters.

Referring again to memory 230 in FIG. 2. Memory 230
may include a wide variety of memory media including but
not limited to volatile memory, non-volatile memory, flash,
programmable variables or states, random access memory
(RAM), read-only memory (ROM), flash, or other static or
dynamic storage media.

In one example, machine-readable instructions can be pro-
vided to memory 230 from a form of machine-accessible
medium. A machine-accessible medium may represent any
mechanism that provides (i.e., stores and/or transmits) infor-
mation or content in a form readable by a machine (e.g., an
ASIC, special function controller or processor, FPGA, or
other hardware device). For example, a machine-accessible
medium may include: ROM; RAM; magnetic disk storage
media; optical storage media; flash memory devices; electri-
cal, optical, acoustical or other form of propagated signals
(e.g., carrier waves, infrared signals, digital signals); and the
like.

In the previous descriptions, for the purpose of explana-
tion, numerous specific details were set forth in order to
provide an understanding of this disclosure. It will be appar-
ent that the disclosure can be practiced without these specific
details. In other instances, structures and devices were shown
in block diagram form in order to avoid obscuring the disclo-
sure.

References made in this disclosure to the term “responsive
to” are not limited to responsiveness to only a particular
feature and/or structure. A feature may also be “responsive
to” another feature and/or structure and also be located within
that feature and/or structure. Additionally, the term “respon-
sive t0” may also be synonymous with other terms such as
“communicatively coupled to” or “operatively coupled to,”
although the term is not limited in his regard.

What is claimed is:
1. A method to reduce memory power consumption for a
computing platform, the method comprising:

during runtime of the computing platform, inspecting an
operating parameter associated with a resource of the
computing platform that is updated by the resource of
the computing platform during the runtime of the com-
puting platform;

predicting a change from a current level of memory power
utilization by the computing platform to another level of
memory power utilization by the computing platform
during the runtime of the computing platform, the pre-
dicting including evaluating, based on the inspecting the
operating parameter, a statistical parameter of a statisti-
cal prediction algorithm, wherein the operating param-
eter includes a network traffic parameter, a processing
element memory allocation parameter or a memory
access pattern parameter; and

transitioning a current power state of at least one memory
module resident on the computing platform to one of a
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plurality of power states based on the predicting of the
change from the current level of memory power utiliza-
tion.
2. The method of claim 1, wherein inspecting the operating
parameter comprises monitoring a memory location storing
the operating parameter, wherein the memory location
includes at least one of a register, a table in memory, or a
buffer.
3. The method of claim 1, wherein the resource comprises
at least one of a processing element, a network interface, or a
memory controller.
4. The method of claim 1, wherein the statistical prediction
algorithm is determined during a given period of time that
begins as the computing platform is initially powered-up.
5. The method of claim 1, wherein the statistical prediction
algorithm is determined during a given period of time and
tuned periodically during the runtime of the computing plat-
form.
6. The method of claim 5, wherein the statistical parameter
includes at least one of memory requests made to a memory
controller for the at least one memory module, memory
capacity utilization for a processing element on the comput-
ing platform and network bandwidth on at least one commu-
nication link between the computing platform and a network.
7. The method of claim 1, further comprising:
obtaining a configuration parameter from a memory con-
troller for the at least one memory module, the configu-
ration parameter to include at least one usage configu-
ration for the at least one memory module selected from
the following group of: memory interleaving, memory
mirroring, memory sparing and rank order allocation.
8. The method of claim 1, wherein the plurality of power
states includes an offline state, an online state, a standby state,
or a suspend state.
9. The method of claim 1, wherein the at least one memory
module is a fully buffered dual inline memory module (FB-
DIMM).
10. The method of claim 9, wherein transitioning the FB-
DIMM to one of the plurality of power states results in
another FB-DIMM resident on the computing platform also
transitioning to the same power state.
11. A non-transitory machine-accessible storage medium
storing content, which, when executed by a machine resident
on a computing platform causes the machine to perform:
monitoring an operating parameter associated with a
resource of the computing platform during runtime of
the computing platform by inspecting a memory loca-
tion that is updated by the resource of the computing
platform during runtime of the computing platform;

predicting a change from a current level of memory power
utilization by the computing platform to another level of
memory power utilization by the computing platform
during the runtime of the computing platform, the pre-
dicting including evaluating, based on the inspecting the
operating parameter, a statistical parameter of a statisti-
cal prediction algorithm, wherein the operating param-
eter includes a network traffic parameter, a processing
element memory allocation parameter or a memory
access pattern parameter; and

transitioning a current power state of at least one memory

module resident on the computing platform to one of a
plurality of power states based on the predicting of the
change from the current level of memory power utiliza-
tion.

12. The non-transitory machine-accessible storage
medium of claim 11, wherein the memory location comprises
at least one of a register, a table in memory, or a buffer.
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13. The non-transitory machine-accessible storage
medium of claim 11, wherein the resource comprises at least
one ofa processing element, a network interface, ora memory
controller.

14. The non-transitory machine-accessible storage
medium of claim 11, wherein the statistical prediction algo-
rithm is determined during a given period of time that begins
as the computing platform is initially powered-up.

15. The non-transitory machine-accessible storage
medium of claim 11, wherein the statistical prediction algo-
rithm is determined during a given period of time and tuned
periodically during the runtime of the computing platform.

16. The non-transitory machine-accessible storage
medium of claim 15, wherein the statistical parameter
includes at least one of memory requests made to a memory
controller for the at least one memory module, memory
capacity utilization for a processing element on the comput-
ing platform and network bandwidth on at least one commu-
nication link between the computing platform and a network.

17. The non-transitory machine-accessible storage
medium of claim 11, wherein the plurality of power states
includes an offline state, an online state, a standby state, and
a suspend state.
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